Answers of mid-term exam: Foundation Engineering
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(1) Asthe shear stress on the vertical smooth wall surfaceis zero,
the vertical and horizontal planes are principal stress planes.
For active conditions, 0’ <0, .

Hence,
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This stress condition can be extended to the entire area satisfying
the criteriaas shown in Fig.A (Answer of g(1)).
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(2) From the geometry in Fig.A,
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By integrating eq.(4) from to H, lower bound of active total earth pressure
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AE=eh(B, +&v, HdV,  (9)

Hence oh and P, direct oppositely, AE becomes as following using egs. (7) and (8),
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(5) Hence the wall surface is smooth, no energy dissipation occurs,

AW =c'Beldw, cosy (1)
Using eq.(1) and bc = H /sina
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(6) From AE=AW and egs. (10) and (12)
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substituting a=45°+¢ /2 into eq.(9), the following condition can be satisfied.

(14)

tan(d5 +¢@/2) _ cotdS +¢/2)
%:KHZ sin’(45 +@/2) cos' (45 +¢@[2)y 0

da 2 —tara
_, CoS(A5 +¢12) cosid5 — 1 2) ~sin(A5# @/ 2)sin@5 -/ 2)
c'H cosy —racod@-g) 19

=0
or -
R e / 0 sina =cos(a - ¢') & cosa =sin(a - ¢')
ARy _ ¥ 42 Sinacosa —Sn@-¢)cosla=¢) g a=45+¢/2
dr 2 tatacos(a-¢g)cosa
—¢'H cosy cosq%cgqu‘ﬂcSl.n.a‘Zs.n(p‘ 0 (14)
s’ acos (o —¢) 5
0 tan2a = -cot¢'=tan(90° +¢')

a=45"+¢'/2

substituting a=45°+¢' /2 into eq.(13),
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AsP,=P,, , egs.(5) and (16) are exact solution of the active earth
pressure on smooth vertical wall.



Q2. Explain thereason why thelimit analysis can be reasonably applied to stability
analyseson clay for short term problemsand why it cannot be directly applied for
the stability analyses on loose sand?

Applicability of limit analysisto the stability problem highly depends on how
much the actual conditions ar e close to the conditions theoretically required in the
analysis. That isthe material should be perfect plastic material, following 1) non-
plastic hardening type stress strain relation and 2) associate flow rule or normality
rule.

As can be seen in Fig.2.1, dense sand does not show the hardening behavior after
failure, while loose sand shows strain hardening at large strain level, which cannot
satisfy condition 1).

For saturated clay in short term problem undrained condition can be reasonably
assumed, because of low per meability, hence undrained strength ¢, with ¢,=0 can be
used asthefailurecriteria. Asundrained condition in saturated soil secureszero
volumetric strain, vector of plastic strain directsvertically, being normal to the
failurecriteria, satisfying associate flow rue as show in Fig.2.2(1).

For sand in which drained condition can be satisfied in normal practice, the
failurecriteria shown in Fig.2.2(2) isused. In order to satisfy the associate flow rule,
theratio of plastic volumetric strain to plastic shear strain, -0¢€?, /6&2 (=tany) should
be tang. This means quite lar ge negative plastic volumetric strain g, ,should take
place at failure. Asshown in Fig.2.1(2), the volumetric strain increment for dense
sand at failureis negative showing dilation, but for loose sand very small or even
positive volumetric strain increment isnormally observed. From these dilatancy
(volume change characteristics dueto shear), the associate flow rule can be
reasonably satisfied for the dense sand but not for the loose sand.
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5/, =8N, &, =0N,Sin15 and A, =AW, =AW, /cosd5 (1)
Table 3.1 Mechanism |
dip shear length displacement OW=c Low
plane stress L SW
ad C, Bsin60°/sin75° OW/COsAS° Bc, Sw,sin60°
cosA5%sin75°
db C, Bsind5°/sin75° dw,sin30° Bc _5u_WFSi n30°
cosA5sin75° sin?75°
dc C, Bsin60°/sin75° oW /CosA5° Bc 3w, sin60°
CosA45°SiN75°
Table 23.2 Mechanism |1
dip shear length displacement OW=c Low
plane stress L SW
ad C, Bcos45° OW/cosASP Bc,dw,
Fan C, R=Bcos45° OW/CosAS° Bc, maw,
06=11/6 3
dc C, BcosA5® W /CosAS° Bc,ow,




Volume of block A and B:
_ yB%sin60° sin45°
2sin75°

For Mechanism I: oV, =0V, = 2.1)

_ _ B
For Mechanism I: 5VA—5VB—T (2.11)

(2-1) External work of Mechanism | is given by Eq.(3.1)
AEl = dNF |:(Dult +5/A E)ldVA +6‘/B deB (3-| )
by substituting egs.(1) and (2.1) into eq.(3.1)
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(2-11) External work of Mechanism Il is given by Eq.(3.11)
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From the right figure, eq.(1), and Table 2 rd
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by substituting egs.(1) , (2.11) and (5) into eq.(3.11)
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Using eq.(5)
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(3-1) From Table 3.1, internal energy dissipation of Mechanism | is
sin6Q’ N sin30°
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AW =(10-4/3PBcan.  (8-1)

(3-11) From Table 3.2, internal energy dissipation of Mechanism 1 is

AW, = 2Bc o, + 3Bca/v @8.11)

(4-1) From AE=AW and Egs.(6.1) and (8.1),

Q, = (10—4(3)&; —@ yB® =3.07Bq, —@ yB? @)

(4-11) From AE=AW and Egs.(6.11) and (8.11),

Qe BH"%CU——yB =3.0478g, —@yB <Q,, (9N)




(5)

Since the major principal stresses ( 0,(x))
direct vertically at the embankment top surface,
the Mohr stress circle, G, at the point g and its
polearegiven asin Fig.2.4. From thefigure,
the shear stress acting on the plane parallel to
theline gi isnegative. Hencethedliplinegih
is@ dlip line (discontinuity) .

Fig.4  Sipline network

Fig.3.4

(6) Since the stresses normal and parallel to the slope are minor principal stress (o,=0) and
major principal stresses respectively, the Mohr stress circle of the point ¢ can be drawn as
shown in Fig.2.5. And mean stress of point cis

SC = CU (9)

Change of mean stress As caused by rotation of major principal stress, An, and elevation
change, Az, along a3 dlip line for undrained conditionsis given by

As=-2Anc, +yA\z  (10)

Since An=-15° (=-1712) and Az=-Bcos45° (sin15°+sin75°-sin60°) from point ¢ to point h
and An=-30° (=-1¢6) and Az=-Bsin60° from point ¢ to point h,
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Hence, Mohr circles of pointsc, h and a can be drawn as shown in Fig. 2.5.

Fig.3.5

(7) Similar to (6), the change of mean stress from point f to g is obtained by eq.(10
and
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Eq.(14) is Q; from the slip line method obtained by integrating eg.(13)
from x=0to B. It isequal to Q,, (eg.(8.11)) from the upper bound analysis
using mechanism |1,
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